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1  |  INTRODUC TION

Ecosystem respiration (Re) is a fundamental process in the global 
carbon cycle, involving the release of CO2 from plants and soils 

back to the atmosphere (Atkin & Tjoelker, 2003; Maes et al., 2024). 
Re and ecosystem gross primary production (GPP) through pho-
tosynthesis jointly determine the carbon balance of terrestrial 
ecosystems, commonly referred to as net ecosystem production 
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Abstract
1.	 Ecosystem respiration (Re) plays a critical role in the global carbon cycle, but is 

conventionally modelled with temperature response functions that do not ad-
equately account for the limiting effects of high temperature on Re.

2.	 Using Re data from the FLUXNET2015 network, we compared the conventional 
exponential temperature response function with a unimodal function that incor-
porates these effects.

3.	 We found that the conventional function significantly underestimates the sensi-
tivity of Re to temperature, potentially leading to overestimation of future carbon 
emissions. The activation energy (Ea) estimated by the unimodal function aver-
aged 0.97 ± 0.44 eV, substantially higher than the 0.58 ± 0.27 eV calculated by 
the exponential function. The temperature threshold (Tth ) for Re inhibition was 
identified at an average of 26.58°C across biomes. The largest Re increase occurs 
under SSP585, reaching 147.85% and 153.81% for the exponential and unimodal 
functions, respectively, by 2100 relative to Re simulated using the exponential 
function in 1990. As rising temperatures push ecosystems toward their thermal 
optimum, greater overestimation beyond the divergence threshold in SSP585 
reduces the difference between the two functions compared to SSP245 and 
SSP370.

4.	 These findings emphasize an underestimated temperature dependence and inac-
curate trends in ecosystem respiration, highlighting the necessity of integrating 
high-temperature inhibition effects into Re models to improve projections of car-
bon dynamics.

K E Y W O R D S
ecosystem respiration, high-temperature inhibition, temperature dependence, temperature 
response function, temperature threshold
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(NEP) (Chen,  2021; Schimel et  al.,  2001). Recent studies have 
demonstrated that the release of CO2 from terrestrial ecosystems 
has been increasing and is likely to continue to rise in the future 
(Duffy et al., 2021; Tang et al., 2022; Yu et al., 2022). Temperature 
is typically considered as the primary driver of Re and its changes 
over time (Davidson & Janssens, 2006; Niu et al., 2024; Tagesson 
et al., 2024), but mounting evidence shows that temperature has 
not been adequately formulated in Re models at local, biome, and 
global scales (Bond-Lamberty & Thomson, 2010; Chen et al., 2023; 
Zou et al., 2022). This limitation hinders our capability to estimate 
total carbon emissions as well as the carbon balances of terres-
trial ecosystems under the changing climate, especially with the 
increasing frequency of extremely high temperatures (Bennett 
et al., 2023; Qu et al., 2024).

Conventional schools of thought on the temperature dependence 
of Re assume an exponential rise in Re with temperature, and that 
it will continue to increase in the foreseeable warmer future (Duffy 
et al., 2021; Nissan et al., 2023; Yu et al., 2022). However, metabolic 
rates for plant photosynthesis and respiration are known to increase 
with temperature, reaching a threshold (i.e. temperature constraint) 
after which these rates start to decline (Atkin et al., 2000; Kattge 
& Knorr,  2007; Lloyd & Taylor,  1994; Michaletz,  2018; O'Sullivan 
et al., 2017). For many terrestrial regions, ambient air temperatures 
during the warmest quarter are often thought to have surpassed the 
temperature threshold (Tth) for photosynthesis (~23 ± 6°C) (Bennett 
et al., 2021; Duffy et al., 2021; Huang et al., 2019). Similarly, respi-
ration rates have been observed to decline sharply at high tempera-
tures (Duffy et al., 2021; O'Sullivan et al., 2017; Robinson et al., 2017; 
von Buttlar et  al.,  2018; Zou et  al.,  2022), with laboratory experi-
ments estimating the Tth for leaf and soil respiration to be around 
50 and 70°C, respectively (Liang et al., 2018; Robinson et al., 2017). 
These laboratory-based Tth values, however, far exceed the Tth ob-
served in the field (e.g. in-situ measured Tth for soil respiration is 

approximately 20°C at Canada forest sites; Khomik et al., 2009) and 
the projected temperature of any near-term warming scenario. The 
temperature inhibition of Re has also been widely reported in the 
literature (Chen et al., 2023; Niu et al., 2024; Ping et al., 2023). Were 
future carbon release predicted based on these laboratory-based 
temperature thresholds, with the expectation that Re will continue 
to increase within the projected temperature range, our current es-
timates would be significantly overstated under warmer scenarios.

The temperature dependence of Re, traditionally quantified 
using the exponential Boltzmann-Arrhenius (B-A) function, de-
scribes how Re rate varies with temperature in terrestrial and 
aquatic biomes (Lloyd & Taylor, 1994; Reichstein et al., 2005; Yvon-
Durocher et al., 2012). When Tth is higher than the ambient tempera-
ture, the B-A function appears to be reliable (Figure 1a). However, 
this monotonic function describing the unimodal Re with tempera-
ture exceeding Tth is problematic (Figure 1b). Johnston et al. (2021) 
recognized the limits of traditional models in assessing temperature 
dependence and applied a segmented threshold model with Re data 
from the FLUXNET2015 database. They found a lowered tempera-
ture dependence of Re at higher temperatures, with a breakpoint at 
15.1 ± 0.22°C. Based on the FLUXNET-CH4 database, Li et al. (2023) 
also reported that the temperature dependence of Re was reduced 
with rising monthly mean temperature, reasoning that high summer 
temperatures inhibit Re. An increasing number of similar studies sup-
port the abovementioned findings in different biomes (Chen, 2021; 
Xu & Qi, 2001; Zou et al., 2022). The B-A function is widely used in 
popular ecosystem models (Todd-Brown et al., 2013) and as a stan-
dard flux partitioning procedure for the data process of FLUXNET, 
OzFlux, and other networks, potentially leading to biased estimates 
(Isaac et  al.,  2017; Lasslop et  al.,  2010; Pastorello et  al.,  2020). 
Without doubt, it is necessary to seek a new temperature response 
function to improve the temperature sensitivity of Re for terrestrial 
ecosystems worldwide.

F I G U R E  1  Changes in ecosystem respiration rate with temperature. (a) Re rate increases as an exponential function of temperature 
(blue points and line) until a temperature threshold is reached (brown points and line). (b) A monotonically increasing function that does 
not consider high-temperature inhibition would underestimate the activation energy, whereas the unimodal function (red points and line) 
provides realistic predictions. Re, ecosystem respiration; ln(Re), natural logarithm of Re; Tth, temperature threshold; 1/T, reciprocal of 
temperature; Ea, activation energy; Eh, deactivation energy.
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Here, we reassessed the temperature response characteristics 
of Re by seeking answers to two fundamental questions: (i) What 
is the magnitude of underestimation using the actual temperature 
dependence of Re in exponential temperature response function 
across diverse biomes? (ii) How do unimodal temperature responses 
affect the projected trends for Re on a warming Earth? Firstly, we 
reevaluated the temperature dependence of Re in all Koppen-Geiger 
climatic biomes based on activation energy (Ea) through fitting a uni-
modal temperature response function (Sharpe-Schoolfield function, 
S-S) to the FLUXNET2015 Re data. This approach implicitly com-
bines multiple rate-limiting processes, offering a comprehensive 
perspective on ecophysiology. We then underscored the limitations 
of the B-A function in estimating temperature response at extremely 
high temperatures based on eight sites with apparent heatwaves. 
Additionally, we analysed the contributions of other biophysical fac-
tors on model coefficients by biome. Finally, we examined the future 
trends of global land ecosystem respiration with projected tempera-
tures at a global scale.

2  |  MATERIAL S AND METHODS

2.1  |  Data sources

FLUXNET is a global network of eddy-covariance (EC) flux towers 
that record continuous exchanges of CO2, water vapour, and en-
ergy between terrestrial ecosystems and the atmosphere (Baldocchi 
et al., 2001). FLUXNET2015 is the most updated dataset drawn from 
FLUXNET towers that provide daily mean air temperature and Re 
from 213 sites (Figure 2). These sites span a latitudinal range from 
78.92° N to 37.43° S, encompassing polar to tropical rainforest bi-
omes, with site air temperatures ranging from −52.88 to 46.26°C, 
based on FLUXNET2015 data.

The FLUXNET2015 sites were aggregated based on the 
Koeppen-Geiger climate classification (1986–2010) (Rubel 
et al., 2017). Biomes with fewer than five sites were merged into 
similar higher-level climatic zones. In the absence of such zones, 
we used the original classification. All sites were grouped into 12 
biomes (Figure  2): A (tropical climates), BWh/BSh (arid and hot 
climates), BWk/BSk (arid and cold climates), Csa (temperate cli-
mates with dry and hot summer), Csb (temperate climates with 
dry and warm summer), Cfa (temperate climates without dry sea-
son and with hot summer), Cfb (temperate climates without dry 
season and with warm summer), Dw (cold climates with dry win-
ter), Dfa (cold climates without dry season and with hot summer), 
Dfb (cold climates without dry season and with warm summer), 
Dfc (cold climates without dry season and with cold summer) and 
ET (polar climates). It is worth noting that most sites were in the 
mid-latitude biomes, with cold climate biomes having the highest 
number of sites (96 sites), and tropical climate biomes having the 
fewest (17 sites).

The FLUXNET2015 datasets were quality-controlled, filtered, 
gap-filled, and partitioned using consistent methods (Papale, 2020; 
Pastorello et al., 2020). To avoid self-correlation between GPP and 
Re caused by flux partitioning of eddy-covariance (EC) carbon fluxes 
(Vickers et al., 2009), we used Re and GPP data based on the daytime 
partition approach (Lasslop et al., 2010). This approach is based on a 
hyperbolic light response curve fit to daytime CO2 flux, modified to 
account for the temperature sensitivity of respiration. In this study, 
we used non-gap-filled daily Re (RECO_DT_VUT_REF) and daily 
mean air temperature (TA_F) during the growing seasons for the 
temperature response of Re. Data were included only if quality con-
trol scores met thresholds of NEE_VUT_ReF_QC >0.8 and TA_F_QC 
>0.8. The growing season was defined as the periods when daily 
mean air temperature (Ta) exceeded 5°C for at least five consecutive 
days (Chen et al., 2023).

F I G U R E  2  Distribution of FLUXNET2015 sites in Koppen-Geiger climate biomes (1986–2010) (Rubel et al., 2017). Among these sites, Re 
was better modelled with S-S function (red circles) at 159 sites and with the B-A function (blue circles) at 33 FLUXNET2015 sites. Re from 
21 sites (green circles) did not show an apparent relationship with temperature. Biomes with fewer than five sites were merged into similar 
higher-level climatic zones. In the absence of higher-level climatic zones, we used the original classification. S-S function, Sharpe-Schoolfield 
function; B-A function, Boltzmann-Arrhenius function; A, tropical climates; BWh/BSh, arid and hot climates; BWk/BSk, arid and cold 
climates; Csa, temperate climates with dry and hot summer; Csb, temperate climates with dry and warm summer; Cfa, temperate climates 
without dry season and with hot summer; Cfb, temperate climates without dry season and with warm summer; Dw, cold climates with dry 
winter; Dfa, cold climates without dry season and with hot summer; Dfb, cold climates without dry season and with warm summer; Dfc, cold 
climates without dry season and with cold summer; ET, polar climates.
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2.2  |  Replication statement

Scale of 
inference

Scale at which the  
factor of interest is 
applied

Number of replicates 
at the appropriate 
scale

Biome Biome 12 biomes

Site Site 1 site per biome

2.3  |  Temperature response function of Re

Two distinct temperature responses of Re were tested: B-A 
(Arrhenius,  1889) and S-S (Schoolfield et  al.,  1981) functions. The 
B-A function is expressed as

where Re (g C m−2 day−1) is the daily ecosystem respiration, Re0 (g C 
m−2 day−1) is a normalization constant, Ea (eV) is the activation energy 
characterizing the temperature sensitivity of Re, k (8.617 × 10−5 eV K−1) 
is the Boltzmann constant, and T (K) is the ambient temperature. The 
Boltzmann factor e−Ea∕kT reflects the fraction of molecules that attain 
the Ea needed to react.

The S-S function assumes that reaction rates obey B-A kinetics 
at lower temperatures but are reduced by high-temperature inacti-
vation. The S-S function is expressed as,

where Eh (eV) characterizes deactivation energy above the tempera-
ture Th (K) at which the respiration is 1∕2 operational and 1∕2 dormant 
(Schoolfield et al., 1981). The Tth was defined as the temperature at the 
apex of the S-S unimodal curve.

The S-S function is a framework rooted in the principles of ther-
modynamics, which provides a mechanistic basis to simulate the 
temperature dependence of rates across scales from individual en-
zyme kinetics to organismal and ecosystem metabolism (Chen, 2021; 
Michaletz, 2018). The B-A function is a special case of the S-S func-
tion where the high-temperature inactivation term is one and the 
temperature-rate relationship is exponential without a maximum 
(Figure 1b; Schoolfield et al., 1981). The S-S function is applicable 
across a range of processes and levels of biological organization, and 
it has been widely applied to capture the temperature dependence 
of organismal growth (Adair et al., 1989; Gibert & De Jong, 2001; 
Padfield et  al.,  2020), plant photosynthesis (Michaletz,  2018; 
Stinziano et al., 2018), respiration (Padfield et al., 2016) and evolu-
tionary patterns (Schaum et al., 2017).

Following Niu et al. (2012) and Chen et al. (2023), we grouped the 
daily mean air temperature and corresponding carbon fluxes (Re and 
GPP) into 1°C temperature bins for each site. The average value within 
each temperature bin was used to construct the 

[

Re − Ta

]

 or 
[

GPP − Ta

]

 

response curves, emphasizing the variation of carbon fluxes with tem-
perature. Fitting was performed using Levenberg–Marquardt non-
linear regression with Gaussian random starting values, followed by 
evaluation using the Akaike Information Criterion (AICc) (Akaike, 1998) 
from 20 fits for each curve. Model fitting was conducted in the statis-
tic software R version 4.3.2 (R Core Team, 2023), utilizing a modified 
version of the code provided by Michaletz (2018). The starting value of 
parameters, Ea, and ln

(

Re0

)

 , were estimated based on the data before 
Tth, which is estimated first and is the temperature when the carbon 
flux value reaching the maximum. Ea estimated using the linear regres-
sion between log (Re) and 1/kT. ln

(

Re0

)

 is the log transformed maxi-
mum Re. The starting value of Th was set as the starting value of Tth. 
The starting value of Eh was set as the four times of starting value of Ea. 
These initial estimates were used to generate randomized starting val-
ues for each model parameter in each fitting iteration, using Gaussian 
distributions centered on the initial estimates. Each fit is based on the 
Levenberg–Marquardt nonlinear regression with a parameter search 
space described in Table S1.

2.4  |  Inhibition of high temperature

Following the approach of Xu et  al.  (2020), who investigated 
the importance of high temperature at FLUXNET2015 sites (i.e. 
heatwave events), we selected eight sites based on similar criteria: 
(1) each site had over 7 years of meteorological measurements, (2) 
each site experienced at least three heatwave events in summer, 
(3) the selected sites represented a variety of ecosystem and plant 
functional types, (4) no irrigation was conducted during the study 
period. ‘Hot days’ were defined as days when the daily maximum 
temperature (Tmax) ranked within the top 10% of historic daily Tmax 
values and exceeded the multi-year average Tmax by 5°C throughout 
the summer (mid-growing season) at a site. A period of at least 
seven consecutive ‘hot days’ was considered a heatwave event. If a 
‘non-hot day’ occurred within a period of eight or more consecutive 
‘hot days,’ the period was also classified as a heatwave event. Each 
vegetation type was represented by one site for our study, totalling 
eight sites, to assess the fitness of B-A and S-S functions for Re 
during hot years. The temperature dependence of Re was fitted with 
both functions during heatwave years.

2.5  |  Importance of forcing factors

The Random Forest (RF) model enables us to assess the importance 
of meteorological, soil, and vegetation factors in estimated ERe

a
, TRe

th
 

and ΔERe
a

 (Gregorutti et al., 2017). ERe
a

 and TRe

th
 are derived from sites 

modelled with the S-S function; ΔERe
a

 represents the variance be-
tween the estimated ERe

a
 in S-S and B-A functions.

Micrometeorological factors used in this study include the 
annual maximum daily temperature (Tmax, °C), mean annual tem-
perature (MAT, °C), growing season temperature (GST, °C), grow-
ing season solar radiation (GSR, W m−2), annual precipitation (AP, 

(1)Re = Re0 ⋅ e
−

Ea

kT

(2)Re=Re0 ⋅e
−

Ea

kT ⋅

[

1+

(

Ea

Eh−Ea

)

e
−Eh ⋅

(

1

kTh

−
1

kT

)]−1
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mm), vapour pressure deficit (VPD, kPa), potential evapotranspira-
tion (PET, mm) and soil moisture (SM, m3 m−3). PET was calculated 
through the Thornthwaite method based on temperature and day 
length recorded by the EC tower (Adams,  2017; Chen,  2021). SM 
at 5 cm depth was obtained from the observation data of each site 
if available, or retrieved from the ESA CCI Soil Moisture Dataset 
by longitude and latitude (https://​www.​esa-​soilm​oistu​re-​cci.​org/​) 
when SM was not measured at the tower site. All potential forcing 
variables were calculated from the site-year data. We considered soil 
properties such as soil organic carbon (SOC, g kg−1), soil bulk density 
(BD, kg m−3), soil nitrogen content (N, cg kg−1) and pH obtained from 
SoilGrids (Poggio et  al.,  2021), as well as biomass (BM, Mg C ha−1) 
(Liu et al., 2015) to evaluate their potential influences on Ea and Tth.

2.6  |  Modelling Re

We applied the B-A and S-S functions to each Koppen-Geiger 
climatic biome to simulate Re for both historical (1990–2014) 
and future (2015–2100) periods under four climate scenarios. To 
construct these functions and estimate Tth, we utilized growing 
season data from FLUXNET2015, which were binned and averaged 
for each biome to ensure parameterization. The simulations of global 
terrestrial Re were conducted with surface temperature data from 
four climate change scenarios in the NoreSM2-MM model of Coupled 
Model Intercomparison Project 6 (CMIP6) (https://​pcmdi.​llnl.​gov/​
CMIP6/​​): SSP126, SSP245, SSP370 and SSP585. The NoreSM2-MM 
model (Seland et al., 2020) operates at a daily or three-hour time step 
with a resolution of 1.25° × 0.9375°. It implements a temperature 
response function for photosynthesis similar to the S-S model, with 
the response level indicated by Ea and Eh (Kattge & Knorr,  2007). 
For the temperature response function of Re in the NoreSM2-MM 
model, the Arrhenius function was employed (Ali et al., 2016). Land 
surface temperature data from NoreSM2-MM were used to drive 
both the B-A and S-S functions, enabling biome-specific simulations 
of Re under varying climate conditions.

3  |  RESULTS

3.1  |  Global biome Ea and Tth

The S-S function appeared to be superior to the B-A function for 
modelling the temperature responses of Re at 159 sites in the 12 
Koppen-Geiger climate biomes (Figure 2). However, the B-A function 
provided a better fit for 33 sites. Both functions failed to capture 
temperature responses at 21 sites, mostly located in the equatorial 
region and Northeast Asia.

Estimated Ea in the S-S function at the 159 sites was considerably 
higher than that of the B-A function by biome (Figure 3a), with an av-
erage ES−S

a
 and EB−A

a
 of 0.97 ± 0.44 eV and 0.58 ± 0.27 eV, respectively 

(Table 1). Most sites (78.62%) have a difference between ES−S
a

 and 
EB−A
a

 (ΔEa) ≤0.60 eV (Figure S1a). The relative Ea values from the two 

functions among the biomes are nonetheless similar, with biomes in 
lower latitude regions having greater Ea than those in higher latitude 
areas (Figure S2a,b). Importantly, ΔEa appears higher in mid-latitude 
biomes compared to high- and low-latitude biomes (Figure S2c).

The average Tth for Re across biomes ranges from 21.21 to 
30.95°C in the S-S function, with a mean of 26.58°C (Figure 3b and 
Table 1). The Tth in 76.10% of the biomes falls between 15 and 35°C 
(Figure S3a), with 30.82% of sites showing a Tth that exceeds Tmax 
(Figure S3b). Sites in low-latitude biomes exhibit a higher frequency 
of data exceeding the Tth (Figure S2e), but with Tth and Tmax strongly 
and positively correlated (r = 0.62, p < 0.001) (Figure S3b). For sites 
where the B-A function fits better than the S-S function, there are 
fewer cases of temperature exceeding Tth (5.45% and 10.77% on av-
erage, respectively) (Table 1 and Table S2). It is worth noting that 
good performance of the B-A function indicates that ambient tem-
peratures do not reach the Tth for the sites.

3.2  |  Temperature inhibition of Re

The S-S function performed better than the B-A function at seven 
out of the eight sites that experienced heatwaves (Figure 4a–g), 
due to the presence of high-temperature inhibition of Re. The B-A 

F I G U R E  3  Violin plots of (a) activation energy and (b) 
temperature threshold by biome using B-A and S-S functions. 
Asterisks (*) indicate the significant difference between EB−A

a
 and 

ES−S
a

 (***p < 0.001; ∗∗p < 0.01; and *p < 0.05). Bh and Bk represent 
BWh/BSh and BWk/BSk, respectively. See Figure 2 for biome 
names. Refer to Table 1 for the number of biome sites. S-S function, 
Sharpe-Schoolfield function; B-A function, Boltzmann-Arrhenius 
function; A, tropical climates; BWh/BSh, arid and hot climates; 
BWk/BSk, arid and cold climates; Csa, temperate climates with 
dry and hot summer; Csb, temperate climates with dry and warm 
summer; Cfa, temperate climates without dry season and with hot 
summer; Cfb, temperate climates without dry season and with 
warm summer; Dw, cold climates with dry winter; Dfa, cold climates 
without dry season and with hot summer; Dfb, cold climates 
without dry season and with warm summer; Dfc, cold climates 
without dry season and with cold summer; ET, polar climates; Ea, 
activation energy; Tth, temperature threshold.

(a)

(b)
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TA B L E  1  Estimated model coefficients for sites with S-S function.

Biome EB−A
a

 (eV) ES−S
a

 (eV) Tth (°C) ES−S
h

 (eV)
Post-threshold 
fraction (%) AIC

B−A
AIC

S−S n

A 1.54 ± 0.87 2.05 ± 0.92 27.12 ± 2.62 11.00 ± 7.64 31.47 ± 6.05 −1.74 ± 12.45 −22.31 ± 18.28 4

BWh/
BSh

0.72 ± 0.34 1.21 ± 0.50 27.57 ± 1.50 5.19 ± 3.37 32.92 ± 14.03 8.60 ± 19.32 −21.68 ± 28.61 7

BWk/
BSk

0.43 ± 0.18 1.14 ± 0.72 30.53 ± 10.77 3.00 ± 2.16 13.68 ± 23.56 −24.80 ± 32.50 −52.22 ± 30.83 9

Csa 0.38 ± 0.20 0.88 ± 0.32 21.21 ± 5.14 2.08 ± 1.01 28.74 ± 21.03 −8.39 ± 29.18 −57.95 ± 25.80 17

Csb 0.51 ± 0.15 1.07 ± 0.56 29.91 ± 13.62 2.47 ± 1.93 14.03 ± 10.27 −25.64 ± 24.50 −65.79 ± 26.32 12

Cfa 0.48 ± 0.19 0.79 ± 0.39 28.32 ± 7.72 2.83 ± 2.34 16.72 ± 19.05 −20.12 ± 20.22 −57.44 ± 27.41 11

Cfb 0.53 ± 0.15 0.84 ± 0.29 24.43 ± 3.66 1.52 ± 0.42 2.53 ± 2.72 −39.88 ± 29.68 −103.35 ± 30.10 16

Dw 0.97 ± 0.05 1.61 ± 0.88 24.17 ± 7.78 2.16 ± 0.10 NA −36.42 ± 40.36 −51.16 ± 21.02 2

Dfa 0.54 ± 0.10 0.71 ± 0.18 26.47 ± 2.22 2.78 ± 2.68 9.49 ± 13.23 −34.71 ± 22.45 −94.39 ± 42.31 5

Dfb 0.57 ± 0.11 0.84 ± 0.25 26.33 ± 7.30 1.86 ± 1.00 4.04 ± 5.96 −37.32 ± 19.58 −90.35 ± 33.82 41

Dfc 0.64 ± 0.14 0.99 ± 0.30 28.37 ± 13.65 1.90 ± 1.33 4.90 ± 6.09 −32.26 ± 19.37 −78.40 ± 24.86 26

ET 0.58 ± 0.21 1.12 ± 0.35 30.95 ± 17.42 3.12 ± 3.94 6.79 ± 10.33 −29.65 ± 13.37 −74.55 ± 21.25 9

All sites 0.58 ± 0.27 0.97 ± 0.44 26.58 ± 9.33 2.51 ± 2.55 10.77 ± 15.45 −27.43 ± 25.73 −73.96 ± 35.22 159

Note: EB−A
a

 and ES−S
a

 represent estimated activation energy in the B-A and S-S functions, respectively. ES−S
h

 indicates the deactivation energy in the 
S-S functions. Post-threshold fraction represents the percentage of data after the peak corresponding to the temperature threshold (Tth) in the 
S-S function. AICB−A and AICS−S represent the model accuracy for the B-A and S-S functions, respectively (AIC: Akaike information criterion). n 
represents the number of sites. See Figure 2 for biome names.

F I G U R E  4  Thermal response curves of ecosystem respiration during heatwave years at eight selected sites: (a) DK-Sor; (b) RU-Fyo; 
(c) IT-Cpz; (d) IT-Noe; (e) AT-Neu; (f) US-SRG; (g) CH-Oe2 and (h) US-Ne3. The blue and orange lines are based on B-A and S-S functions, 
respectively. The title of each panel represents the FLUXNET site ID and vegetation type. Note that modelled lines from S-S and B-A are 
overlapped in (h). DBF, deciduous broadleaf forest; ENF, evergreen needleaf forest; EBF, evergreen broadleaf forest; SH, shrub; GRA-C3, C3 
grassland; GRA-C4, C4 grassland; CRO-C3, C3 crop; CRO-C4, C4 crop.

(a) (b) (c)

(d) (e)

(g) (h)

(f)
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    |  7LIU et al.

function appears to be inadequate for capturing the temperature 
response of Re during heatwave years, providing underestimated 
Re in normal temperature ranges and overestimated Re during 
high-temperature periods. The average temperature across sites 
for this shift is 20.70 ± 3.52°C. The average Ea across sites was un-
derestimated by 0.24 ± 0.12 eV. Interestingly, slightly better per-
formance is found for the B-A function at the US-Ne3 C4 cropland 
site (Figure 4h).

3.3  |  Biophysical factors influencing Ea and Tth in 
global biomes

Among the explored biophysical variables, TRe

th
, VPD, MAT, GST and 

Tmax exhibit significant influences for all biomes on the activation en-
ergy of Re (ERe

a
) (Figure 5a). ERe

a
 and Tth of GPP (TGPP

th
) appear to have 

the greatest influence on Tth of Re (TRe

th
) across all biomes (Figure 5b). 

TRe

th
, Tmax, MAT, and VPD are found to be significant in affecting the 

difference in activation energy (ΔERe
a

) across all biomes (Figure 5c). 
There is no significant correlation between Tth and ΔERe

a
 (Figure S1). 

Soil characteristics have relatively low contributions on modelling 
ERe
a

 and TRe

th
.

The ranking of influencing factors for ERe
a

, TRe

th
, and ΔERe

a
 varies 

among biomes (Figure 5). In tropical biome A, PET and AP are the 
most crucial factors for ERe

a
, while SM and AP are the primary factors 

for TRe

th
. For ΔERe

a
, TRe

th
 and AP are the key influencing factors. In the 

polar biome ET, VPD and AP are the primary factors for ERe
a

, AP is the 
main factor for TRe

th
, and VPD and PET are the most influential factors 

for ΔERe
a

. Such disparities in factor importance are also observed in 
other biomes.

3.4  |  Discrepancies in the simulated Re by the two 
functions under future scenarios

The B-A function appears inadequate for capturing the temperature 
response of Re when temperatures exceed Tth, resulting in underes-
timated Re under normal temperatures and overestimated Re dur-
ing high-temperature periods. Based on the NoreSM2-MM model 
simulation, the global number of days with temperature exceeding 
Tth (T > Tth), where Tth is fitted separately for each biome (Figure S6), 
is projected to increase under all four future scenarios during 2015–
2100 (Figure 6a). Specifically, the number of days with T > Tth shows 
a consistent upward trend under the SSP370 and SSP585 scenarios, 

F I G U R E  5  Ranked factors influencing the estimation of (a) activation energy (ERe
a

) and (b) temperature threshold (TRe

th
) in the S-S function, 

and (c) the difference  ΔERe
a

 between values derived from the S-S and B-A functions, based on random forest analysis. ΔERe
a

 represents the 
difference between the estimated ERe

a
 from S-S and B-A functions, respectively. TGPP

th
 (°C): Temperature threshold of GPP; Tmax (°C); MAT (°C); 

AP (mm); GSR (W m−2); VPD (kPa); PET (mm); SM (%); GST (°C); BD (kg m−3); N (cg kg−1); SOC (g kg−1); pH; BM (Mg C ha−1). Information for 
model accuracy of random forest is presented in Figures S4 and S5.

(a) (b) (c)
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8  |    LIU et al.

while the increasing rate slows under SSP245 and SSP126 approxi-
mately after the mid-21st century (2045–2055). Notably, under the 
SSP126 scenario, the global average number of days with T > Tth 
stabilizes after the mid-21st century. During the historical period 
(1990–2014), a pronounced latitudinal gradient is observed, with 
high values in tropical and subtropical regions (Figure 6b), averag-
ing 65 ± 93 days above Tth. Across all four future scenarios, spatial 
patterns of changes in the number of days with T > Tth in the mid- or 
late-21st (2090–2100) century, relative to those of the historical pe-
riod remain similar, with the most significant increases occurring in 
low-latitude regions (Figure S7).

The mean daily Re during the growing-season predicted by the 
S-S function generally increases faster than those predicted by the 
B-A function under the four scenarios during 2015–2100 (Figure 6c). 
This could be attributed to the future increase in days with T > Tth 

(Figure  6a). Under the SSP585 scenario, the predicted mean daily 
growing-season Re could reach 3.67 g C m−2 y−1 and 3.81 g C m−2 y−1 
predicted by the B-A and S-S functions, respectively, by 2100 
(Figure 6c). They increase by 47.85% and 53.81%, respectively, rel-
ative to those in the year 2015. Furthermore, the differences be-
tween ReB-A and ReS-S were more clearly demonstrated in Figure 6d. 
The SSP370 and SSP245 scenarios exhibit a greater average differ-
ence, particularly pronounced during the mid-21st century.

4  |  DISCUSSION

Departures from exponential behaviour in respiration have been 
recognized in various modelling research. Heskel et  al.  (2016) and 
O'Sullivan et al. (2017) found convergence in leaf respiration across 

F I G U R E  6  Temporal dynamics of Re and air temperature in global biomes, excluding non-vegetated areas, such as built-up lands, snow, 
ice, barren lands, and water bodies. (a) Annual number of days with temperature exceeding Tth in global biomes under four CMIP6 scenarios 
from 1990 to 2100. (b) Annual number of days with temperatures exceeding Tth, based on historical (1990–2014) NoreSM2-MM data, where 
Tth was identified by biome. The insert panel represents the changes in mean ± std. with latitude. (c) Annual global mean Re during the 
growing season under the four temperature scenarios from 1990 to 2100. Dashed and solid lines represent the simulated Re based on the 
B-A and S-S functions, respectively. (d) Annual differences in Re under the four CMIP6 scenarios, calculated as the Re from the S-S function 
minus that from the B-A function. ReB-A and ReS-S represent the Re simulated using the B-A and S-S functions, respectively. The right axes in 
(c) and (d) show values normalized to the simulated 1990 Re from the B-A function.

(a)

(c)

(d)

(b)

 13652435, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.70075 by M

ichigan State U
niversity, W

iley O
nline L

ibrary on [03/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9LIU et al.

biomes using a second-order log-polynomial (LP) function, whereas 
Liang et  al.  (2018) fitted the temperature response of respiration 
enzymes using the macromolecular rate theory (MMRT) function. 
The MMRT function provides a thermodynamic explanation for 
the temperature dependence of respiration and captures the de-
cline in respiration at high temperatures by introducing the con-
cept of ΔC

‡
p, though it is not directly comparable to the Ea of Re in 

prior research (Yvon-Durocher et al., 2012). Moreover, the MMRT 
function is mathematically closely related to the LP function, which 
makes it less flexible in describing the decline in respiration at high 
temperatures. In contrast, the S-S function, while maintaining the 
definition of Ea, introduces a more flexible high-temperature inhibi-
tion term, represented by Eh, derived from the change in enthalpy 
of high-temperature inactivation (Schoolfield et  al.,  1981), and Th, 
describing the temperature (K) at which the respiration is half op-
erational and half dormant (Gibert & De Jong, 2001). Through this 
high-temperature inhibition term, the S-S function can effectively 
describe all three different types of temperature response of Re: a 
monotonous increase, an increase followed by a plateau and a uni-
modal response (Niu et al., 2024). The S-S function also offers the 
advantage of reduced correlation between parameter estimators 
(Schoolfield et  al.,  1981), compared to the MMRT equation (Liang 
et al., 2018).

The average Tth of Re across biomes ranges from 21.21 to 30.95°C, 
with a mean of 26.58°C, slightly higher than that reported by Chen 
et al.  (2023). However, this range is lower than those reported by 
O'Sullivan et al. (2017) (50–60°C), Robinson et al. (2017) (60–80°C), 
and Liang et al. (2018) (64–80°C). Notably, these studies measured 
Tth in artificially heated leaves, laboratory soil and enzyme activity, 
which may differ from the Tth for Re. The Tth for Re is a composite 
concept that may involve various mechanisms, such as the composi-
tion of and changes in land cover (Concilio et al., 2005), short supply 
of respiratory substrates (Chen et al., 2023; Lloyd & Taylor, 1994), 
inhibition of soil water content (Ma et al., 2005; Wang et al., 2014), 
thermal adaptation of microbial growth (Maes et al., 2024), thermo-
dynamic properties of enzymes and adenylate control of electron 
transport (Atkin et  al., 2000) acting individually or in combination 
(Davidson & Janssens, 2006).

Reduced photosynthesis due to high temperatures may constrain 
Re by limiting the replenishment of nonstructural carbohydrate 
storage, thereby influencing the temperature response of Re (Allen 
et al., 2005; Yvon-Durocher et al., 2012). The temperature depen-
dence of photosynthesis is weaker than that of respiration (Jenkinson 
et  al.,  1991; Padfield et  al.,  2016) and is estimated to be approxi-
mately 0.32 eV based on exponential function (Allen et al., 2005) and 
0.53 eV based on S-S function (Michaletz, 2018). Thus, as proposed 
by Yvon-Durocher et al. (2012), annual ecosystem respiration, Re(T) , 
can be considered as constrained by photosynthesis, P(T). In this 
case, Re(T) can be approximated by integrating P(T) with temperature 
variation over time t: Re(T) = �

[

P(T)
]

= � ∫ P(T(t))dt, where P(T(t)) 
represents a unimodal function, and � is the fraction of GPP respired 
by autotrophs and heterotrophs. The temperature dependencies of 
Re may largely reflect the temperature dependence of its respiratory 

components under normal ambient temperature but also indirectly 
incorporate the temperature dependence of photosynthesis when 
respiratory substrate availability is limited (Atkin & Tjoelker, 2003; 
Zhang et al., 2024). This framework assumes that allochthonous car-
bon inputs are much smaller than autochthonous primary production 
(Chapin et  al.,  2011) and that heterotrophic respiration consumes 
most net primary production (Raich & Potter, 1995). Consequently, 
the predicted decline in Re(T) with increasing temperature partly 
reflects a reduction in heterotrophic respiration, as heterotrophic 
respiration increases more rapidly with temperature than autoch-
thonous net primary production (Allen et al., 2005). This mechanism 
aligns well with previous studies showing that the thermal sensitiv-
ity of photosynthesis constrains respiration at the organismal level 
(Padfield et al., 2016; Schaum et al., 2018). Therefore, the TGPP

th
 is the 

key determinant of TRe

th
, as is shown in Figure 5b.

The constrained effect of respiratory substrate availability has 
been demonstrated in long-term rates, which are weaker compared 
to short-term rates and are indistinguishable from that of photosyn-
thesis (Vargas et al., 2010; Yvon-Durocher et al., 2012). For short-
term Re, previous studies have documented either increasing (Duffy 
et al., 2021; von Buttlar et al., 2018) or decreasing (Ciais et al., 2005; 
Reichstein et al., 2007) trends during heatwaves. However, recent 
research has indicated that extreme high temperatures enhance the 
constrained effect strength of GPP on respiration, rather than of 
respiration on GPP, resulting in a synchronous decline in GPP and 
Re during heatwaves (Ping et al., 2023). Drake et al. (2019) found no 
change in the ratio of respiration to photosynthesis following exper-
imental warming treatment. This suggests that such constraints may 
also exist on a short-term scale.

Actual respiration modelling is unlikely to simply link respiration 
to photosynthesis (Collalti & Prentice,  2019). Compared with the 
Farquhar biochemical models of photosynthesis, most approaches 
to modelling respiration are empirical, as respiration involves a series 
of biochemical processes occurring continuously across all tissues 
within ecosystems, each with different mechanisms and metabolic 
relationships (Chen, 2021; Chen et al., 2023; Reich, 2010; Ryan & 
Asao,  2019). Soil water content can suppress respiration when it 
decreases below, or increases beyond, certain threshold points (Xu 
& Qi, 2001). Both drought and waterlogging could limit enzymatic 
activity, microbial growth (Schimel et  al.,  2007), decomposition of 
soil organic matter (Davidson & Janssens, 2006), plant root function 
(Burton & Pregitzer, 2003) and gas diffusion (Moyano et al., 2013), 
thus influencing respiration rate. Soil water content can also affect 
soil temperature, which in turn impacts the metabolic rates of soil or-
ganisms and roots (Suseela & Dukes, 2013). Some microbes produce 
enzymes that function optimally at higher temperatures, thereby 
increasing the rate of organic matter breakdown and CO2 release, 
influencing ecosystem respiration (German et  al.,  2012). Warmer 
temperatures typically decrease microbial carbon use efficiency, 
leading to more carbon being respired as CO2 rather than being used 
for growth (Tucker et  al.,  2013). Very high temperatures typically 
result in a decline in the sensitivity of plant respiration to tempera-
ture, with a change in the demand for adenosine triphosphate (ATP) 
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suggested as the primary factor responsible for this short-term re-
sponse of respiration to temperature (Atkin et al., 2000).

There is currently no scientific consensus in current Earth 
System Models (ESMs) regarding which temperature response func-
tions to utilize (Ali et al., 2016). The temperature response functions 
in most ESMs remain unchanged, maintaining a monotonously in-
creasing type, even after the update from CMIP5 to CMIP6 (Varney 
et al., 2022). Such model deficiencies may compromise the predic-
tive capabilities of these models when confronted with extreme and 
long-term climate warming (Ryan & Asao, 2019). As rising tempera-
tures push more ecosystems toward their thermal optimum, the B-A 
function increasingly underestimates Re (Figure 6). However, in the 
SSP585 scenario, a greater overestimation beyond the divergence 
threshold due to higher temperatures may explain the difference 
between the B-A and S-S functions that is smaller than in SSP245 
and SSP370 (Figure  6d). Exploring temperature response patterns 
of Re will be crucial for predicting global Re against the backdrop 
of ongoing global temperature rise (Bond-Lamberty et al., 2024), as 
Re serves as the primary pathway for CO2 entering the atmosphere 
from the terrestrial biosphere.

It is important to note some limitations of this study. We utilized 
ambient air temperature and total ecosystem CO2 exchange, which 
are directly relevant to global warming estimates tracking global 
mean surface temperature rather than leaf temperature. However, 
several crucial factors may impact our conclusions. Temperature 
often covaries with other variables affecting Re, such as nutrient 
and water availability, and solar radiation (Reichstein et  al.,  2013). 
High-temperature inhibition typically occurs over short periods (Qu 
et al., 2024), and is therefore potentially underrepresented in limited 
data. The analysis of temporal dynamics of Re across global biomes 
does not encompass all biomes. In addition, because of the uneven 
global distribution of flux towers (Chu et al., 2021), our analysis does 
not encompass all biomes. Our analysis does not account for Re ther-
mal acclimation (Atkin & Tjoelker, 2003), which may underestimate 
future trends. Yet this hypothesis about thermal acclimation is still 
highly uncertain because ecosystem adjustments can lag substan-
tially behind the rate of future warming (Huang et al., 2019). Although 
treating Re as a whole simplifies the respiration processes, this study 
still provides a paradigm for the development of respiration models.

This study underscores the critical need of incorporating high-
temperature inhibition into Re response functions to more accu-
rately capture the effects of rising temperatures on ecosystem 
respiration. Our findings demonstrate that the S-S unimodal func-
tion, with a temperature threshold for Re inhibition at 26.58°C, out-
performs the conventional B-A exponential function in capturing 
temperature sensitivity. The divergences in projected Re between 
the two response models emphasize the need for refined modelling 
approaches to improve predictions of carbon dynamics and inform 
mitigation strategies in a warming climate.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Distribution of Ea (n = 159) by range and threshold 
temperature.
Figure S2. Spatial changes of estimated parameters based on B-A 
and S-S functions. The insert in each panel represents the latitudinal 
changes.
Figure S3. Distribution of Tth (n = 159) for all FLUXNET2015 sites.
Figure S4. Comparisons between the observed and estimated TRe

th
 

and ERe
a

 of the testing dataset in the random forest model.
Figure S5. Comparisons between the observed and modeled ΔERe

a
 of 

the testing dataset in the random forest model.
Figure S6. Modeled average ecosystem respiration (Re) based on 
B-A and S-S functions across global biomes.

Figure S7. Spatial patterns of changes in cumulative days with T > Tth 
for mid- or late-21st century compared to those of the historical 
period (1990–2014) under the four CMIP6 scenarios.
Table S1. The search space of each parameter for each fit used in 
our fitting work.
Table S2. Estimated model coefficients for sites with better fitting 
from the B-A function.
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