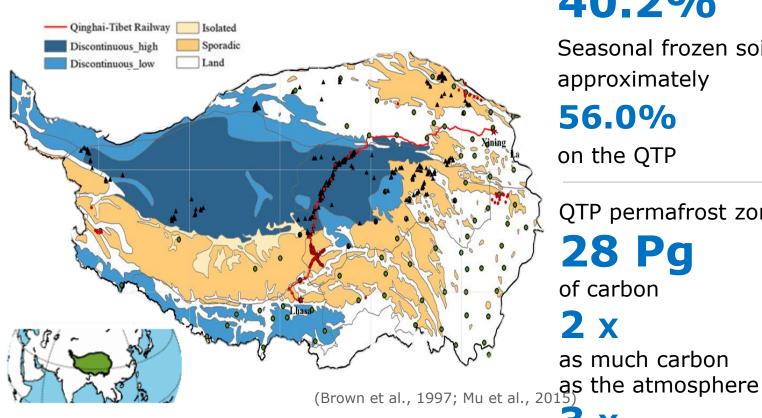
Nov. 27th – Dec. 1st, 2023 • Jeju, Korea AsiaFlux 2023

More Enhanced Non-growing Season Methane Exchanges under Warming on the Qinghai-Tibetan Plateau

Zhenhai Liu (PhD candidate)


Prof. Shaoqiang Wang (Supervisor)

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

The largest area of alpine permafrost in the world

the ground that remains below 0 °C for at least two consecutive years.

Permafrost underlies approximately

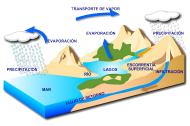
40.2%

Seasonal frozen soil underlies approximately

56.0%

on the QTP

QTP permafrost zone contains about

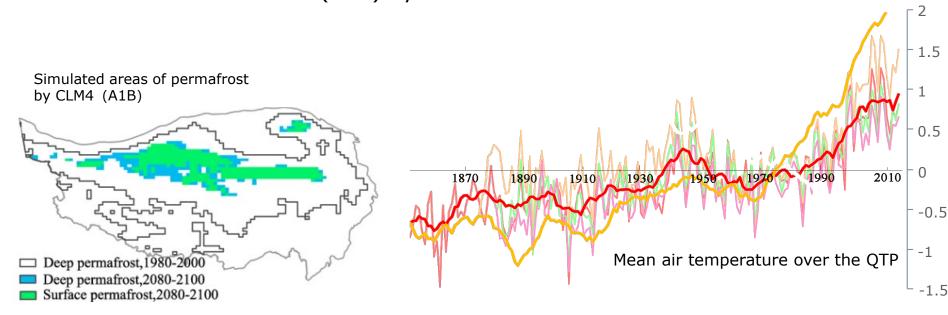

28 Pg

of carbon

2 x

3 x

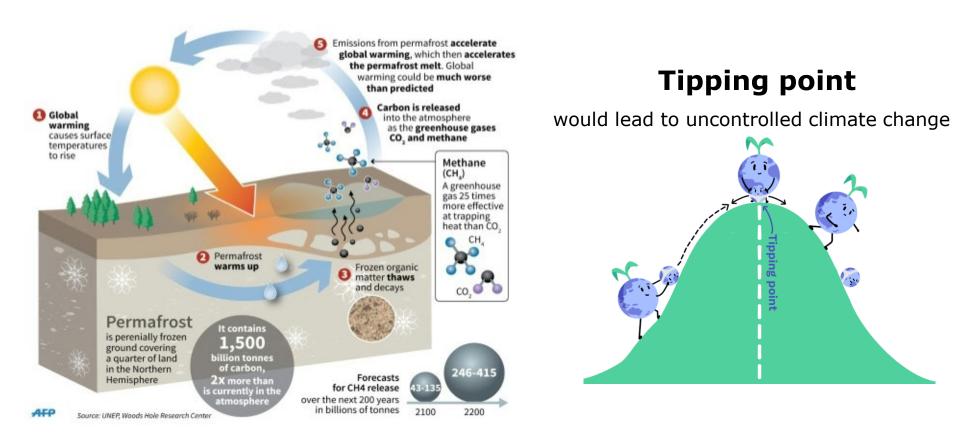
as much carbon

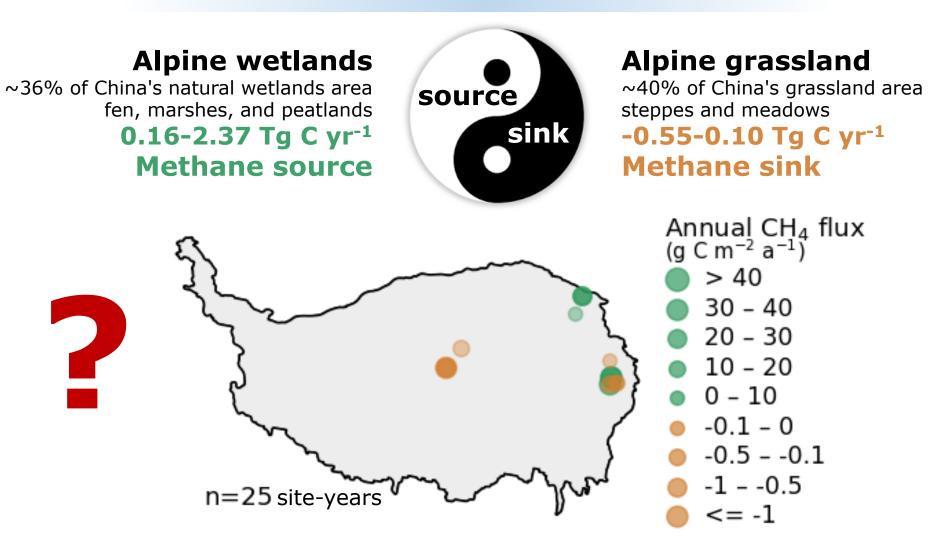


Carbon pool

more than is in the terrestrial vegetation

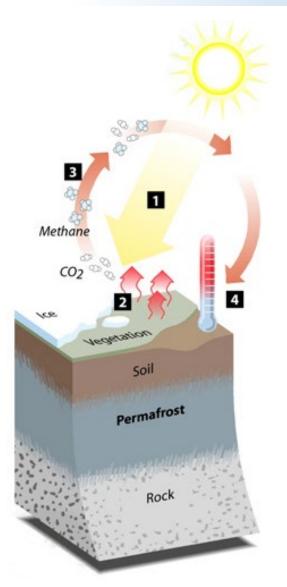
The degradation of permafrost


- Accelerated warming: ~0.3 °C decade⁻¹ from 1960s, faster than the global mean (0.05-0.08 °C decade⁻¹).
- **Continuous degradation:** 6.6×10⁴ km² decade⁻¹ from 1980s on the QTP.
- **Future reduction: 81%** for the cumulative reduction of the permafrost area in medium emission scenario (A1B) by 2100.


Timebomb

When permafrost thaws it releases carbon into the atmosphere in the form of **Carbon Dioxide (CO₂) and Methane (CH₄).**

These greenhouse gases accelerate global warming, which then speeds up the permafrost thaw.

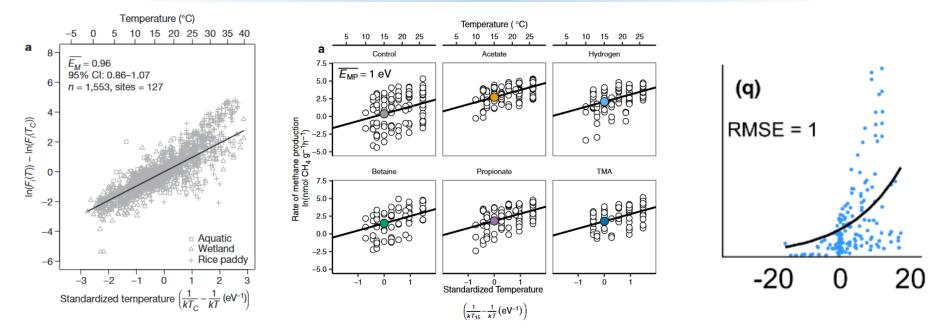


Methane budget

The methane budget of wetland and grassland on the QTP are still uncertain!

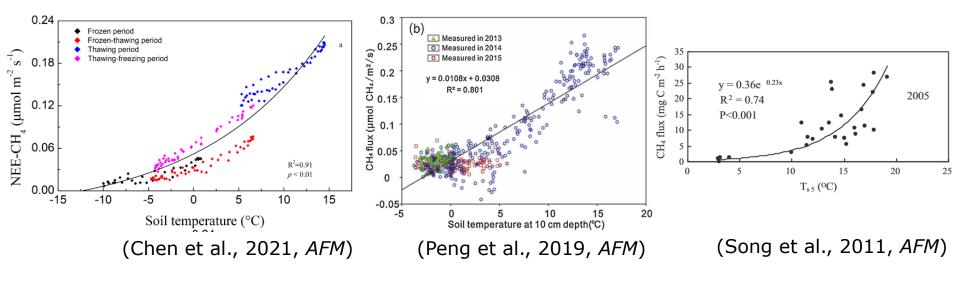
Increasing uncertainty of CH₄ budget

Climate warming

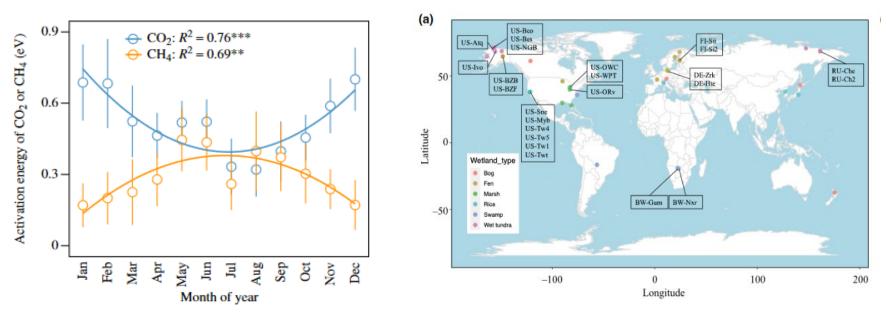

Under RCP4.5 and RCP8.5 scenarios, the carbon release in permafrost area of QTP at 2100 is ~1.86±0.49 Pg and ~3.80±0.76 Pg, respectively.

Permafrost degradation

 Wetlands and grasslands on the QTP both experiencing continued shrinkage or expansion propelled by rapid climate change and permafrost thaw.

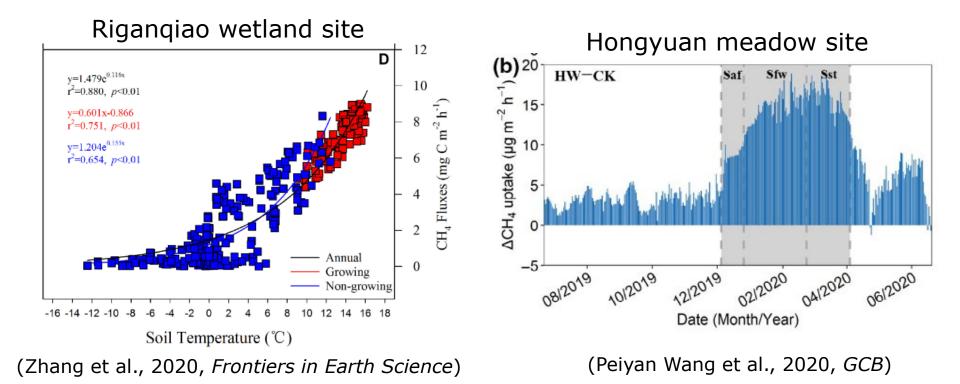

(Wang, et al., 2020, Science Advances)

CH₄ emissions increasing as warming


(Yvon-Durocher et al., 2014, *Nature*) (Zhu et al., 2022, *Nat Commun*)

(Watts et al., 2023, GCB)

Seasonality of global CH₄ response to warming

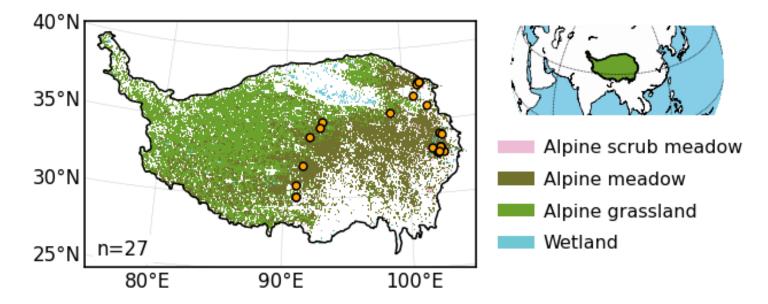

- Research based on global measurements shows that the sensitivity of CH₄ emission from wetlands is correlated with soil temperatures, and reach the maximum in summer.
- This study is based on FLUXNET database, but lacking the measurements on the QTP.

(Li et al., 2023, GCB)

Seasonality of CH₄ response to warming on the QTP

 The warming response of CH₄ exchange in winter and spring was greater than that in summer and autumn.

We suspect that seasonality of CH₄ response to warming on the QTP differs from that from global measurements.


Questions

- What is the general pattern of seasonal temperature dependencies of wetland and grassland CH₄ fluxes on the QTP?
- How does the seasonality affect CH₄ source/sink in wetlands and grasslands on the QTP with soil warming?

Meta analysis

11 wetland sites, 16 grassland sites

9,745 daily observations

Variations of CH₄ fluxes with Ts

- 1 Soil temperature-CH4 fitting
- ② Temperature dependent calculation

Warming impacts on CH₄ exchange

- ③ Control experiment
- ④ Machine learning modeling

Data collection

Manual Static Chamber (MSC)

17 sites

once per day, once per week, or once per month

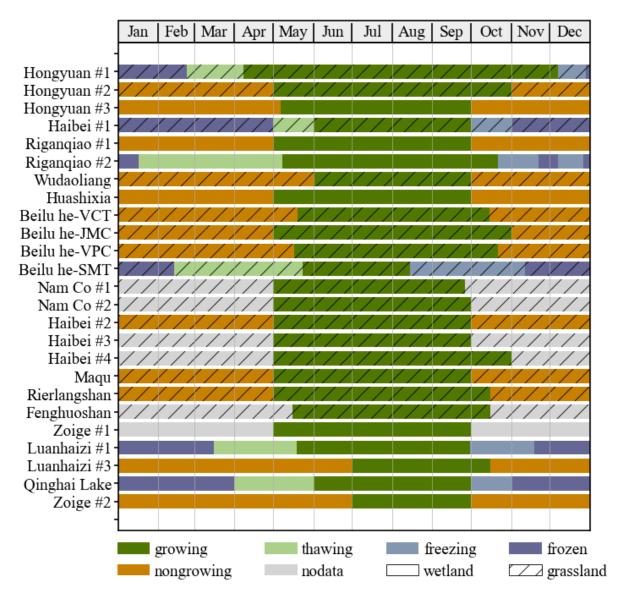
Continuous Automated

Chamber (CAC)

2 sites

Once per 30 minutes or every per hour

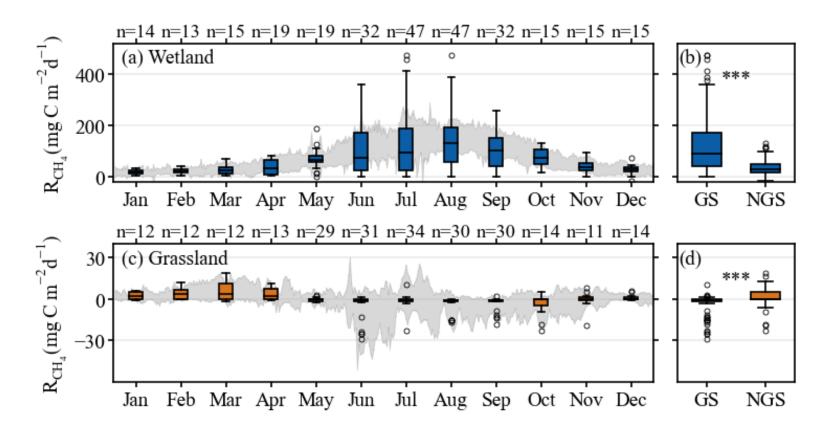
Eddy Covariance (EC)


8 sites

Once per 30 minutes or every per hour

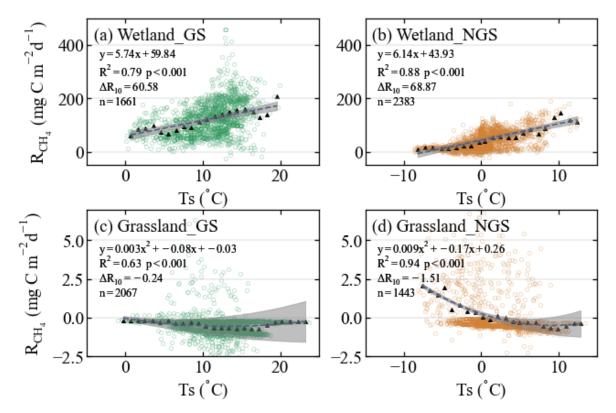
7 sites: raw data2 sites: replicable text18 sites: extracted by GetData

Seasonal division



Major seasonal division methods for CH4-related studies in the QTP:

- Soil temperature variation
- Julia day
- Vegetation phenological
- microbial activity


Source and sink of CH₄ on the QTP

- Wetland is the CH₄ source;
- Grassland is the CH₄ sink in the growing season and the CH₄ source in the non-growing season.

Soil temperature-CH₄ fitting

- CH₄ flux showed significant linear or nonlinear relationship with soil temperature in both growing and non-growing season.
- The absolute value of ΔR_{10} in non-growing season was greater than that in growing season.

 ΔR_{10} : the changes of CH₄ exchange for every 10°C rise in the soil temperature.

Temperature dependence

Boltzmann-Arrhenius function

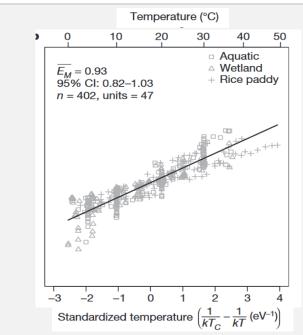
 $\ln R_i(T) = \left(\overline{E} + \epsilon_E^i\right) \left(\frac{1}{kT_{\rm C}} - \frac{1}{kT}\right) + \overline{\ln R(T_{\rm C})} + \epsilon_R^i$

- The mixed-effects models could make up for the shortcomings of fitting analysis that is not
 conducive to multi-site
 integration analysis and find the
 consistent law from the
 differences of multi-sites.
- A larger activation energy indicates higher sensitivity to temperature changes.

Published: 19 March 2014

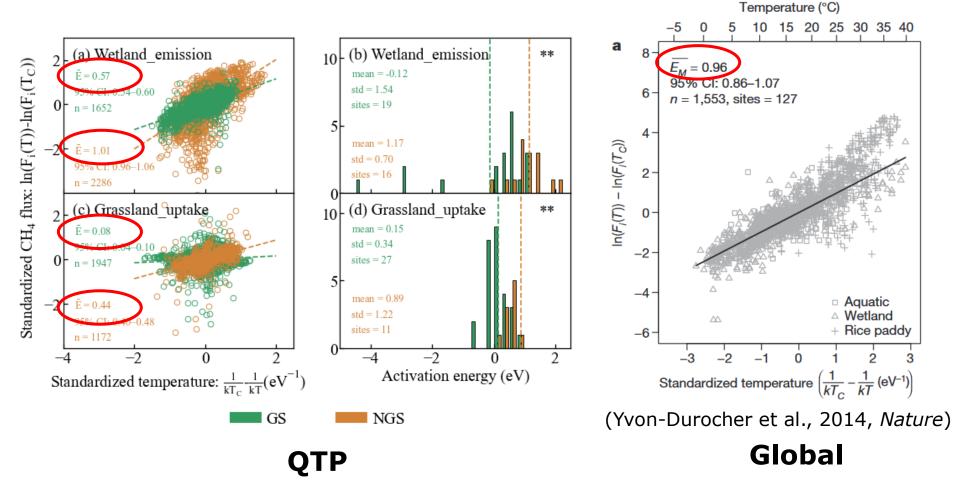
Methane fluxes show consistent temperature dependence across microbial to ecosystem scales

<u>Gabriel Yvon-Durocher</u>[™], Andrew P. Allen, <u>David Bastviken</u>, <u>Ralf Conrad</u>, <u>Cristian Gudasz</u>, <u>Annick St-Pierre</u>, <u>Nguyen Thanh-Duc & Paul A. del Giorgio</u>

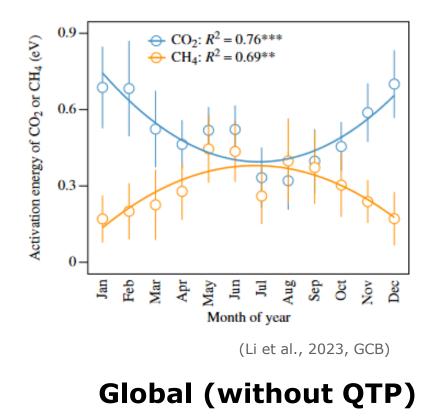

<u>Nature</u> 507, 488–491 (2014) Cite this article

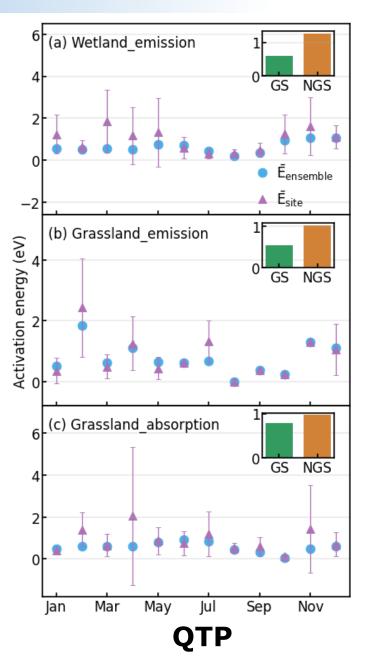
Article | Published: 09 August 2021

Differences in the temperature dependence of wetland CO_2 and CH_4 emissions vary with water table depth


Hongyang Chen, Xiao Xu, Changming Fang, Bo Li & Ming Nie 🖂

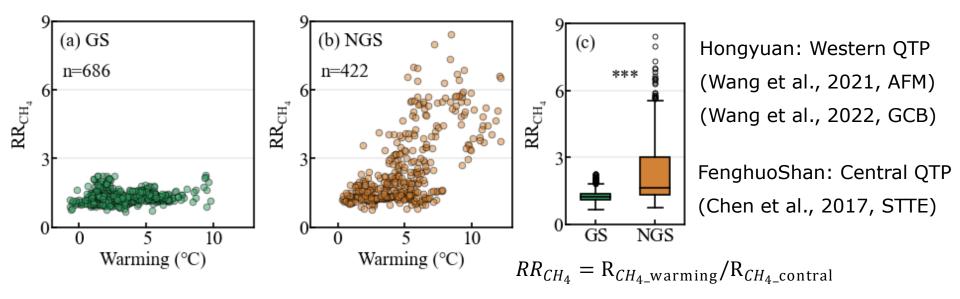
Nature Climate Change 11, 766–771 (2021) Cite this article


Temperature dependence


 The temperature dependence of wetland CH₄ emission and grassland CH₄ absorption was stronger in non-growing season than in growing season.

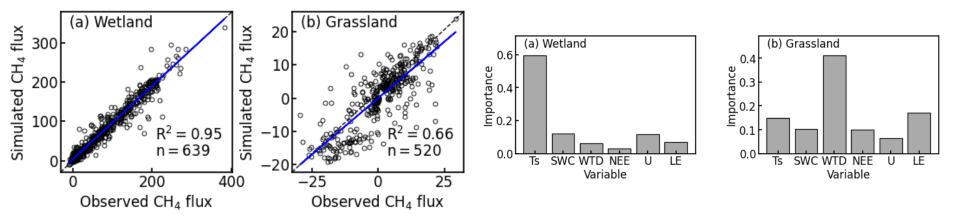
Temperature dependent seasonality differ with global

 The CH₄ temperature dependence of QTP wetland and grassland was stronger than that in the non-growing season.



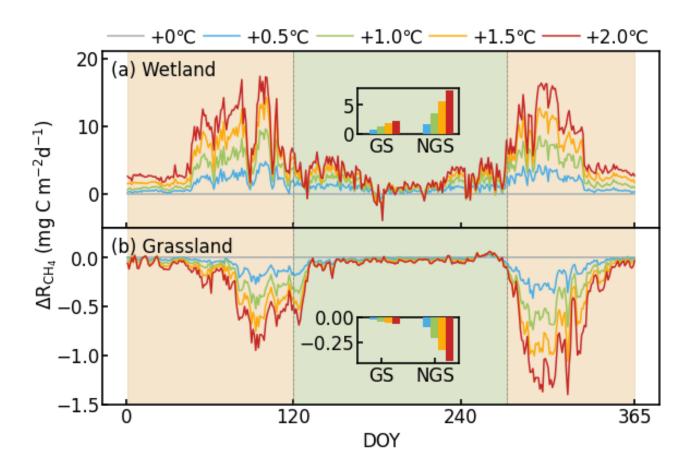
Control experiment

• Integrated analysis of three warming experiments on grasslands;

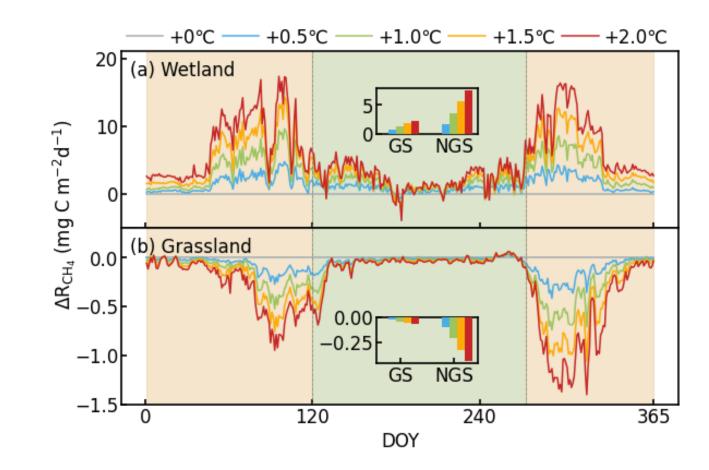

	growing season	non-growing season
average warming magnitude	2.90±1.78°C	4.26±2.33°C
average change rate of CH_4	1.29±0.24 times	1.77±0.93 times

Soil warming and the response of CH_4 in non-growing season were stronger than those in growing season.

Machine learning modeling


Random forest method was used to train and fit the relationship between environmental impact indicators and methane flux.

Variables	Mechanistic relationship	Description of regional data
NEP	Net ecosystem productivity (carbon substrates and respiration)	Net ecosystem productivity simulated by BEPS model (daily, 1981–2019; 8 km, global)
WTH	Water table height (anaerobic condition or barrier for the CH_4 transport)	Groundwater table depth (monthly, single year; 1 km, global)
SWC	Soil water content	ERA5-Land volumetric soil water layer 1 (hourly, 1950–2023; 0.1°, global)
Ts	Soil temperature (enzyme kinetics)	ERA5-Land soil temperature level 1 (hourly, 1950– 2023; 0.1°, global)
U	Friction velocity (CH ₄ transport related to turbulence)	CRU-JRA v2.2 wind speed (6-hourly, 1901–2019; 0.5°, global)
LE	Latent heat flux (plant-mediated CH_4 transport related to transpiration)	MODIS MOD16A2 Version 6 Latent Heat Flux (8-day, 2001–2023; 500 m, global)

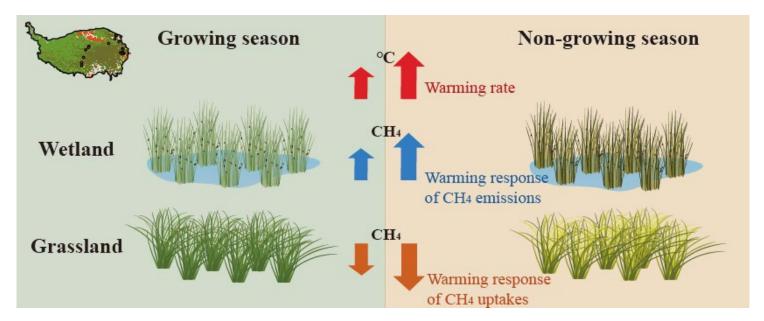

Machine learning modeling

Five simulation schemes were designed with daily soil temperature increasing by $+0^{\circ}C$ (control), $+0.5^{\circ}C$, $+1.0^{\circ}C$, $+1.5^{\circ}C$ and $+2.0^{\circ}C$, respectively, to simulate the temporal and spatial changes of methane fluxes in wetland and grassland areas on the QTP.

Machine learning modeling

- Wetland CH4 emission and grassland CH_4 absorption increased with soil warming.
- With the increase of control warming, the difference of CH₄ between growing and non-growing season gradually increased.
- The transition period (melting and freezing), the change was the largest.

Outlook


 With climate warming and permafrost degradation, wetlands and grasslands on the QTP have been experiencing continued expansion and shrinking and this will result in increasing uncertainty of CH₄ emissions and uptakes on the QTP.

Permafrost degradation-> humidificationSeasonal frozen soil degradation-> desertification

 Therefore, a clear understanding of the seasonality of CH₄ exchange and its response to soil warming will be beneficial to the estimation of the CH₄ budget over the QTP.

Conclusions

- Our study highlights that warming promoted CH₄ emissions in wetlands and uptakes in grasslands on the QTP.
- CH₄ exchange has stronger response to warming in the non-growing than growing season.
- The temperature dependencies of CH₄ exchange of the QTP exhibit different seasonality with the global wetlands, which are stronger during the warmer growing season (Li et al., 2023a).
- Uneven seasonal warming and responses of CH₄ exchange jointly regulate QTP being an ecosystem CH₄ source or sink.

THANK YOU

Data type	Location	Lat. (°N)	Lon. (°E)	Alt. (m)	Ecosystem	Dominant plant species	Source
Raw data	Hongyuan #1	32.80	102.97	3500	Alpine meadow	Deschampsia caespitosa	(Wang et al., 2022)
	Hongyuan #2	32.8	102.55	3500	Alpine meadow	Anemone rivularis	(Wang et al., 2021)
	Hongyuan #3	32.77	102.50	3510	Alpine wetland	<i>Carex mulieensis</i> and <i>Kobresia tibetica</i>	(Peng et al., 2021, 2019)
	Haibei #1	37.62	101.32	3250	Alpine meadow	Kobresia humilis	(Li et al., 2022)
	Luanhaizi #1	37.58	101.33	3250	Alpine wetland	Carex pamirensis	(Song et al., 2015)
	Riganqiao #1	33.11	102.64	3646	Alpine wetland	Carex mulinesis	(Zhang et al., 2020)
	Riganqiao #2	33.10	102.65	3460	Fen	Carex muliensis	(Chen et al., 2021)
Literature	Wudaoliang	35.12	93.05	4767	Alpine steppe	Stipa purpurea	(Pei et al., 2003)
based (table)	Huashixia	35.65	98.80	4400	Alpine wetland	-	(Jin et al., 1999)
Literature based	Beilu' he	34.15	92.06	4765	Alpine steppe	Carex moorcroftii	(Yun et al., 2018)
	Nam Co #1	30.77	90.99	4730	Alpine steppe	Stipa purpurea	(Wei et al., 2012)
	Nam Co #2	30.00	90.98	4730	Alpine steppe	Stipa purpurea	(Wei et al., 2015)
	Naqu Haibei #2 Haibei #3 Haibei #4 Maqu	32.17 37.62 37.62 37.62 35.97	91.47 101.33 101.32 101.32 101.88	4620 3250 - - 3650	Alpine steppe Alpine meadow Alpine meadow Alpine meadow Alpine meadow	Stipa purpurea - Kobresia humilis Kobresia humilis -	(Wan et al., 2010) (Jiang et al., 2010) (Fang et al., 2014) (Zhang et al., 2013) (Liu et al., 2012)
	Nam Co #3	30.00	91.02	4900	Alpine meadow	Kobresia pygmaea	(Wei et al., 2015)
	Rierlangshan Fenghuoshan Luanhaizi #2	34.04 34.73 37.58	102.72 92.89 101.33	3326 4763 3250	Alpine meadow Swamp meadow Alpine marsh	Deschampsia littoralis Kobresia tibetica Carex pamirensis	(Yao et al., 2019) (Chen et al., 2017) (Jin et al., 2015)
	Zoige #1	32.78	102.53	3470	Alpine marsh	<i>Carex muliejsis</i> and <i>Carex meyeriana</i>	(Wang et al., 2002)
	Huahu Lake Luanhaizi #3	33.10 37.48	102.03 101.20	3430 3250	Alpine wetland Alpine wetland	- '	(Chen et al., 2009) (Hirota et al., 2004)
	Qinghai Lake	36.70	100.78	3228	Alpine wetland	Kobresia tibetica and Blysmus sinocompressus	(Wu et al., 2021)
	Riganqiao #3 Zoige #2	33.11 33.93	102.64 102.87	3646 3430	Alpine wetland Fen	Carex mulinesis Kobresia tibetica	(Zhang et al., 2020) (Chen et al., 2013)